10-725: Optimization

Fall 2012

Lecture 6: Subgradient Method, September 13

Lecturer: Ryan Tibshirani

Scribes: Da-Cheng Juan, Jonathon M. Smereka, Kuan-Chieh Chen

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Intro to Subgradients

Some operations on convex functions destroy differentiability but preserve convexity - such as the maxoperation. In these situations, subgradients offer a method of generalizing gradients for optimizing convex functions that are not necessarily differentiable (where gradient descent does not work).

6.1.1 Subgradients

Figure 6.1

To say that a function $f: \Re^{n} \mapsto \Re$ is differentiable at x is to say that there is a single unique linear tangent such as shown in Fig 6.1a that under estimates the function:

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x), \quad \forall x, y
$$

While in Fig 6.1b we see the function f at x has many possible linear tangents that may fit appropriately. A subgradient is any $g \in \Re^{n}$ (same dimension as x) such that:

$$
f(y) \geq f(x)+g^{T}(y-x), \forall y
$$

Thus, if a function is differentiable at a point x then it has a unique subgradient at that point $(\nabla f(x))$.

6.1.2 Subdifferentials

A subdifferential is the closed convex set of all subgradients of the convex function f :

$$
\partial f(x)=\left\{g \in \Re^{n}: g \text { is a subgradient of } f \text { at } x\right\}
$$

Note that this set is guaranteed to be nonempty unless f is not convex.

6.1.3 Normal Cone

Often an indicator function, $I_{C}: \Re^{n} \mapsto \Re$, is employed to remove the contraints of an optimization problem (note that convex set $C \subseteq \Re^{n}$):

$$
\min _{x \in C} f(x) \Longleftrightarrow \min _{x} f(x)+I_{C}(x), \quad \text { where } I_{C}(x)=I\{x \in C\}= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { if } x \notin C\end{cases}
$$

The subdifferential of the indicator function at x is known as the normal cone, $N_{C}(x)$, of C :

$$
N_{C}(x)=\partial I_{C}(x)=\left\{g \in \Re^{n}: g^{T} x \geq g^{T} y \text { for any } y \in C\right\}
$$

6.2 Subgradient Calculus

Here, we provide some basic subgradient calculus for convex functions:

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$. The condition $a>0$ makes function f remain convex.
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial\left(f_{1}\right)+\partial\left(f_{2}\right)$
- Affine composition: if $g(x)=f(A x+b)$, then $\partial g(x)=A^{T} \partial f(A x+b)$
- Finite pointwise maximum: if $f(x)=\max _{i=1 \ldots m} f_{i}(x)$, then
$\partial f(x)=\operatorname{conv}\left(\bigcup_{i: f_{i}(x)=f(x)} \partial f_{i}(x)\right)$, which is the convex hull of union of subdifferentials of all active functions at x.
- General pointwise maximum: if $f(x)=\max _{s \in S} f_{s}(x)$, then
under some regularity conditions (on $\left.S, f_{s}\right), \partial f(x)=\operatorname{cl}\left\{\operatorname{conv}\left(\bigcup_{s: f_{s}(x)=f(x)} \partial f_{s}(x)\right)\right\}$
- Norms: important special case, $f(x)=\|x\|_{p}$. Let q be such that $1 / p+1 / q=1$, then $\partial f(x)=\left\{y:\|y\|_{q} \leq 1\right.$ and $\left.y^{T} x=\max _{\|z\|_{q} \leq 1} z^{T} x\right\}$
Why is this a special case? Note $\|x\|_{p}=\max _{\|z\|_{q} \leq 1} z^{T} x$

6.3 Optimality condition

For a convex f,

$$
f\left(x^{*}\right)=\min _{x \in \mathbb{R}^{n}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{*}\right)
$$

The reason is because $g=0$ being a subgradient means that for all y

$$
f(y) \geq f\left(x^{*}\right)+0^{T}\left(y-x^{*}\right)=f\left(x^{*}\right)
$$

The analogy to the differentiable case is: $\partial f(x)=\{\nabla f(x)\}$.

6.4 Soft-thresholding

We use Lasso as an example to explain the concept of soft-thresholding. First, let us consider a simplified Lasso problem:

$$
f(x)=\min _{x} \frac{1}{2}\|y-x\|^{2}+\lambda\|x\|_{1}
$$

And the solution of this problem is $x^{*}=S_{\lambda}(y)$, where $S_{\lambda}(y)$ is the soft-thresholding operator:

$$
S_{\lambda}(y)= \begin{cases}y_{i}-\lambda & \text { if } y_{i}>\lambda \\ 0 & \text { if }-\lambda \leq y_{i} \leq \lambda \\ y_{i}+\lambda & \text { if } y_{i}<-\lambda\end{cases}
$$

So the subgradients of $f(x)$ is

$$
g=x-y+\lambda s
$$

where $s_{i}=\operatorname{sign}\left(x_{i}\right)$ if $x_{i} \neq 0$ and $s_{i} \in[-1,1]$ if $x_{i}=0$. Now let $x^{*}=S_{\lambda}(y)$ and we can get $g=0$. Why? If $y_{i}>\lambda$, we have $x_{i}^{*}-y_{i}=-\lambda+\lambda \cdot 1=0$. It is similar if $y_{i}<\lambda$. If $-\lambda \leq y_{i} \leq \lambda$, we have $x_{i}^{*}-y_{i}=-y_{i}+\lambda\left(\frac{y_{i}}{\lambda}\right)=0$. Here, $s_{i}=\frac{y_{i}}{\lambda}$.

6.5 Subgradient method

Given a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, not necessarily differentiable. Subgradient method is just like gradient descent, but replacing gradients with subgradients. I.e., initialize $x^{(0)}$, then repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot g^{(k-1)}, k=1,2,3, \cdots
$$

where $g^{(k-1)}$ is any subgradient of f at $x^{(k-1)}$. We keep track of best iterate $x_{\text {best }}^{k}$ among $x^{(1)}, \cdots, x^{(k)}$:

$$
f\left(x_{\text {best }}^{(k)}\right)=\min _{i=1, \cdots, k} f\left(x^{(i)}\right)
$$

To update each $x^{(i)}$, there are basically two ways to select the step size:

- Fixed step size: $t_{k}=t$ for all $k=1,2,3 \cdots$
- Diminishing step size: choose t_{k} to satisfy

$$
\sum_{k=1}^{\infty} t_{k}^{2}<\infty, \quad \sum_{k=1}^{\infty} t_{k}=\infty
$$

6.6 Convergence analysis

Given the convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies:

- f is Lipschitz continuous with constant $G>0$,

$$
|f(x)-f(y)| \leq G| | x-y \| \text { for all } x, y
$$

- $\left\|x^{(1)}-x^{*}\right\| \leq R$ which means it is bounded

Theorem 6.1 For a fixed step size t, subgradient method satisfies

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right) \leq f\left(x^{*}\right)+\frac{G^{2} t}{2}
$$

Proof:

$$
\begin{aligned}
\left\|x^{(k+1)}-x^{*}\right\|^{2} & =\left\|x^{(k)}-t_{k} g^{(k)}-x^{*}\right\|^{2} \\
& =\left\|x^{(k)}-x^{*}\right\|^{2}-2 t_{k}\left(g^{(k)}\right)^{T}\left(x^{(k)}-x^{*}\right)+t_{k}^{2}\left\|g^{(k)}\right\|^{2}
\end{aligned}
$$

By defintion of the subgradient method, we have

$$
\begin{array}{r}
f\left(x^{*}\right) \geq f\left(x^{(k)}\right)+g^{(k)}\left(x^{*}-x^{(k)}\right) \\
-g^{(k)^{T}} \leq-\left(f\left(x^{(k)}\right)-f\left(x^{*}\right)\right)
\end{array}
$$

Using this inequality, we have

$$
\begin{aligned}
\left\|x^{(k+1)}-x^{*}\right\|^{2} & \leq\left\|x^{(k)}-x^{*}\right\|^{2}-2 t_{k}\left(f\left(x^{(k)}\right)-f\left(x^{*}\right)\right)+t_{k}\left\|g^{(k)}\right\|^{2} \\
& \leq\left\|x^{(1)}-x^{*}\right\|^{2}-2 \sum_{i=1}^{k} t_{i}\left(f\left(x^{(i)}\right)-f\left(x^{*}\right)\right)+\sum_{i=1}^{k} t_{i}^{2}\left\|g^{(i)}\right\|^{2}
\end{aligned}
$$

And this is lower bounded by 0 , then we have

$$
\begin{array}{r}
0 \leq\left\|x^{(k+1)}-x^{*}\right\|^{2} \leq R^{2}-2 \sum_{i=1}^{k} t_{i}\left(f\left(x_{(i)}\right)-f\left(x^{*}\right)\right)+\sum_{i=1}^{k} t_{i}^{2} G^{2} \\
2 \sum_{i=1}^{k} t_{i}\left(f\left(x^{(i)}\right)-f\left(x^{*}\right)\right) \leq R^{2}+\sum_{i=1}^{k} t_{i}^{2} G^{2} \\
2\left(\sum_{i=1}^{k} t_{i}\right)\left(f\left(x_{\text {best }}^{(k)}\right)-f\left(x^{*}\right)\right) \leq R^{2}+\sum_{i=1}^{k} t_{i}^{2} G^{2}
\end{array}
$$

For a constant step size $t_{i}=t$:

$$
\frac{R^{2}+G^{2} t^{2} k}{2 t k} \rightarrow \frac{G^{2} t}{2}, \text { as } k \rightarrow \infty
$$

and for diminishing step size, we have:

$$
\sum_{i=0}^{k} t_{i}^{2} \leq 0, \sum_{i=0}^{k} t_{i}=\infty
$$

therefore,

$$
\frac{R^{2}+G^{2} \sum_{i=0}^{k} t_{i}^{2}}{2 \sum_{i=0}^{k} t_{i}} \rightarrow 0, \text { as } k \rightarrow \infty
$$

So, consider taking $t_{i}=R /(G \sqrt{k})$, for all $i=1, \ldots, k$. Then we can obtain the following bound:

$$
\frac{R^{2}+G^{2} \sum_{i=0}^{k} t_{i}^{2}}{2 \sum_{i=0}^{k} t_{i}}=\frac{R G}{\sqrt{k}}
$$

That is, subgradient method has convergence rate of $O(1 / \sqrt{k})$, and to get $f\left(x_{\text {best }}^{(k)}\right)-f\left(x^{*}\right) \leq \epsilon$, needs $O\left(1 / \epsilon^{2}\right)$ iterations.

